Краткая история медицинской визуализации: от рентгеновского снимка до искусственного интеллекта
---
Сначала был только рентген, потом появилось УЗИ, а следом подтянулись компьютерная томография и МРТ. Технологий, которые помогают увидеть человека насквозь, все больше. А анализировать картину уже умеет искусственный интеллект (ИИ). Вместе с LG изучили, как менялись медицинские изображения, и попытались выяснить, заменят ли когда-нибудь живых рентгенологов бездушные, но нечеловечески внимательные нейросети.
Медицинская визуализация — это вообще что такое?
Если коротко, то это такой быстрый и обычно безболезненный способ получить портреты наших костей и внутренних органов, в том числе и болячек, которые в них затаились. Медицинская визуализация — наука молодая. До конца XIX века возможность заглянуть внутрь человеческого тела, не разрезая его, оставалась заветной мечтой врачей и ученых. В ноябре 1895 года она сбылась: господин Рентген открыл свои лучи и понеслось.
Радиография — первый способ медицинской визуализации. Технология «рисует» наши внутренние органы при помощи электромагнитного ионизирующего излучения, к которому относятся в том числе и рентгеновские лучи.
Самые популярные радиографические методики — рентген, маммография (исследование молочных желез) и ангиография (исследование сердца и сосудов). К этой же группе относится компьютерная томография — тот же рентген, но чуть более технологичный. Он преобразует аналоговое изображение в цифровое, а значит, снимки можно детально рассмотреть на мониторе и легко передать другому доктору.
Откуда берется картинка
Рентгеновские лучи проходят сквозь тело. Наши внутренние органы и ткани их поглощают. Плотные кости сильнее, мягкие ткани — меньше, а всякие колечки и цепочки и металл не поглощает вообще. Поэтому перед тем, как сделать снимок, лаборанты заставляют нас снимать все украшения — иначе можно испортить снимок.
В результате на чувствительную пленку или цифровой детектор попадает разное количество лучей: получается изображение с темными костями и светлыми на их фоне внутренними органами — например, легкими.
Как картинка выглядела раньше
Первое рентгеновское изображение сделали на фотографической пластинке. Всего несколько лет назад рентгеновские лучи проецировали на фотопленку, которую нужно было проявлять в темной комнате, а потом еще и закреплять. Все как в аналоговой фотографии — со всеми ее недостатками: проявлять пленку дорого и долго, реактивы небезопасны для здоровья, но главное — полученную фотографию невозможно увеличить, чтобы рассмотреть во всех деталях.
Один из первых рентгеновских снимков — изображение кисти Анны Берты Людвиг, жены Вильгельма Конрада Рентгена. Изобретатель сделал из снимка открытки и разослал друзьям и коллегам
Как картинка выглядит теперь
Современные цифровые рентгеновские аппараты позволяют собирать информацию на чувствительный планшет, который сразу передает ее в компьютер. Такое изображение не нужно проявлять и закреплять — меньше вредных реактивов и экономия времени. Картинка стала намного качественнее, плюс ее можно увеличивать на экране вплоть до мельчайших деталей. Или даже сделать объемную 3D-модель.
После радиографии обычно вспоминают о методе, в котором в качестве «кисточки» используют магнитное излучение. Это та самая магнитно-резонансная томография, перед которой нужно снимать часы и железные украшения.
Откуда берется картинка
Встроенный в МРТ-аппарат здоровенный магнит формирует вокруг пациента сильное магнитное поле. Это поле заставляет колебаться протоны водорода в составе молекул воды. Колебания преобразуются в сигнал. В разных тканях содержится разное количество воды, так что на основе этого сигнала можно построить очень подробное изображение мозга и мягких органов. А вот в костях воды почти нет — так что МРТ больше подходит для исследования внутренних органов и мягких тканей.
Как картинка выглядела раньше
МРТ куда моложе старого доброго рентгена. Один из первооткрывателей метода Реймонд Дамадьян получил патент на изобретение в 1974 году, а коммерческие МРТ-аппараты появились в больницах только в 1980-х годах. Первое медицинское изображение, напечатанное в 1977 году, конечно, выглядит так себе. Но это все равно был прорыв. МРТ не связан с ионизирующим излучением, поэтому исследования можно делать не пару раз в год, а столько, сколько нужно.
Сможете узнать грудную клетку (в поперечном разрезе) на первом медицинском МРТ-изображении?
Зато с мозгом дело пошло веселее — уже в 1980 году на МРТ можно было разглядеть кровоизлияние (на него указывает стрелка)
Как картинка выглядит теперь
Качество изображения зависит от напряжения магнитного поля, которую выражают в единицах Т (Тесла). Современные МРТ-аппараты 7,0 Т позволяют получить картинку, которую смело можно вставлять в анатомический атлас. Забавно, что для повседневной работы такое качество не слишком-то и нужно — для диагностики вполне хватает МРТ-аппаратов 1,5-3,0 Т. Главное, картинку можно рассматривать на мониторе (желательно широкоформатном и ультрачетком), увеличивать в свое удовольствие и пересылать коллегам для консультации.
Слева — картинка, полученная при помощи МРТ-аппарата 7,0 Т, справа — при помощи более старого МРТ-аппарата 1,5 Т /
Эта технология работает за счет звуковых волн высокой частоты. УЗИ существуют в двух вариантах: исследования внутренних органов и допплеровский, чтобы проверить сосуды.
Откуда берется картинка
Если совсем просто, то ультразвуковой аппарат «прогоняет» сквозь наше тело высокочастотные волны, которые по-разному отражаются от внутренних органов — как эхо в лесу. Отраженная звуковая волна превращается в изображение. Качество картинки, конечно, не такое роскошное, как в КТ или МРТ, но в медицине бывают ситуации, когда разрешение не столь важно. УЗИ позволяет увидеть, увеличен ли орган, есть ли в нем структурные изменения, не появился ли камень в желчном пузыре и закрылся ли родничок у младенца. А еще ультразвук гораздо, гораздо дешевле МРТ и КТ — а, значит, доступнее для пациентов.
Как картинка выглядела раньше.
Ультразвук активно изучали еще в XIX веке. Идея привлекала военных, потому что ультразвук хорошо распространяется в воде. Он позволяет исследовать рельеф морского дна и «видеть» мины. Для медицинской диагностики же УЗИ впервые использовали 1940-х годах, а окончательно ультразвук закрепился только в конце 50-х. До 80-х качество изображений оставляло желать лучшего — сейчас вообще непонятно, как врачи могли хоть что-то на них разобрать.
УЗИ материнского живота 1960-х годов — где-то здесь есть плацента
УЗИ материнского живота 1980-х годов — уже гораздо качественнее, плаценту видно лучше — и не только потому, что на неё указывает линия из точек
В 1990-е все стало вообще хорошо — даже непосвященный может догадаться, что на УЗИ виден спинной мозг плода
Как картинка выглядит теперь
Современные УЗИ делают в 2D, 3D или даже в 4D — это 3D в движении. Врач может обследовать пациента в реальном времени: изображение выводится прямо на экран, его можно сохранить.
В XXI веке 3D-4D УЗИ-изображения уже можно считать самыми первыми детскими портретами
Помимо трех китов медицинской визуализации, ещё есть ядерный резонанс — так называют способ рисования внутренних органов при помощи радиоактивных изотопов, которые вводят внутривенно. Звучит жутковато, но в реальности не так страшно и менее опасно, чем рентген. Основанный на ядерном резонансе метод называется позитронно-эмиссионная томография (ПЭТ) — правда, используется он не так часто, как первые три способа визуализации, так что останавливаться на нем не будем.
А когда уже искусственный интеллект заменит рентгенолога?
Первую систему для автоматического анализа медицинских изображений попытались создать, как только появилась возможность оцифровывать и загружать их в компьютер, в 1970-е годы. До 1990-х годов возможности «кремниевого рентгенолога» были ограниченными. Уж очень мы все разные, и органы у нас не похожи друг на друга — так что умная машина часто находила несуществующие проблемы и пропускала реальные.
К концу 1990-х дело пошло веселее. Появились самообучающиеся компьютерные алгоритмы, которые называются сверточными нейронными сетями (CNN). CNN способны к глубокому обучению. Например, они умеют анализировать медицинские изображения мозга (не важно какие — рентгеновские, МРТ или УЗИ) и сравнивать их с библиотекой картинок, на которых есть опухоль. Если на снимке есть что-то похожее на рак — умная машина предупредит врача и попросит его уделить этому случаю внимание.
Хотя говорить, что CNN вот-вот заменят докторов, пожалуй, рановато. В отличие от машины, живой человек способен анализировать не только картинку, но и историю жизни пациента, его пол и возраст — это лучше помогает прояснить ситуацию. А еще врач может нести ответственность за свою ошибку — в отличие от компьютера, наказывать который бессмысленно.
В общем, пока эти проблемы не преодолены, наши диагнозы зависят от главного инструмента — глаз живого человека в белом халате. А то, что смогут различить эти глаза, во многом зависят от того, насколько качественный и большой перед ним стоит экран. Если диагонали и контрастности хватает, то врач сможет вывести на него детальное изображение, карту пациента и переписку с коллегами по всему миру.
Так что хорошие медицинские изображения — это отлично. Но чтобы от них действительно была польза, неплохо бы выдать каждому врачу по хорошему монитору!
Текст: Даниил Давыдов
Источник: polonsil.ru
Комментарии (0)
{related-news}
[/related-news]