Как выиграть в игру «Орел или решка» !
Мы как то с вами разбирались, что такое ПАРАДОКС ДНЕЙ РОЖДЕНИЯ В КОЛЛЕКТИВЕ, а сейчас еще одна казалось бы необычная задачка.
Представим, что кто-то бросает вам вызов в игре «орел-решка». Правила просты — каждый из вас предсказывает последовательность из трех бросков, либо орел, либо решка. Затем вы бросаете монету до тех пор, пока составится одна из ваших последовательностей. Если последовательность вашего соперника появляется первой, вы даете ему 20 $.
Если же первой складывается ваша комбинация — его двадцатка ваша. Если вы оба играете честно, кажется, что ваши шансы на выигрыш составляют 50 на 50, не так ли?
А вот и не всегда так. Смотрите …
Даже если у вас нет монет с секретом, зеркал или магнита, и вероятность каждого броска действительно 50 на 50, вы все еще можете манипулировать игрой. У вашего соперника есть 87-процентный шанс обыграть вас, и секрет в том, чтобы сделать свой ход вторым. Допустим, человек, совершивший первый ход, назвал: «орел, орел и решка». Задача второго игрока — запомнить и выполнить два шага:
Ваше первое название должно быть противоположным второму названию соперника. В этом случае — решка.
Ваши второе и третье названия должны совпадать с первыми двумя названиями соперника. В этом случае — орел, орел.
Если вы будете следовать этим правилам, ваши шансы на выигрыш всегда будут выше, иногда незначительно, а иногда и намного больше, чем у соперника. Если вы не верите нам, попробуйте сами и убедитесь. Это называется «нетранзитивная игра». То есть, каждый выбор, который вы можете сделать, либо лучше, либо хуже, чем любой другой возможный вариант. Это практически то же самое, что и игра «Камень, ножницы, бумага», только в этом случае, делая первый ход, вы говорите своему противнику, выбираете вы камень, бумагу или ножницы, прежде чем он сделает свой выбор. Поэтому не ходите первым. Следуя вышеупомянутым правилам, вы почти всегда сможете повернуть все в свою пользу.
Пользуйтесь!
А вот еще один интересный примерчик. Вот как вы думаете, насколько уникальна перетасованная колода карт ?
Допустим, вы сдаете карты в игре в покер. При этом уточним: вы — опытный сдающий, а не один из тех людей, которые просто неумело крутят карты в руках как дети. Вы мастерски тасуете карты, перебрасываете их из руки в руку, жонглируете, и т. д., пока, в конечном счете, не приходите к выводу, что карты расположены в абсолютно случайном порядке.
Каковы шансы, что конфигурация колоды, которую вы сейчас держите, такая же, как той, которую вы перемешивали в прошлый раз? Один шанс из 1000? Один из 10000? Не забываем, что у нас всего 52 карты.
Сейчас вы должны почувствовать себя особенным, потому что почти бесспорно, что конфигурация колоды, которую вы держите в руке, никогда не создавалась ни одним человеком за всю историю человечества на этой Земле, и ни в одной из ее параллельных Вселенных. Вы сейчас держите в руках нечто, что никогда не будет снова создано, отныне и до самого конца времен.
Согласитесь, непохоже, что 52 карты — это много. Но для попытки подсчитать количество возможных комбинаций из этих карт, вам понадобится не один свободный вечер. Общее количество статистических комбинаций колоды из 52-х карт — это то, что известно как «52 факториал», или «52!».
Полностью это число выглядит так:
80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277, 824,000,000,000,000.
Представьте, что «если бы у каждой звезды в нашей галактике было триллион планет, а на каждой планете жило бы триллион людей, и у каждого человека был триллион колод карт, и они бы перетасовывали карты 1000 раз в секунду и делали это со времен Большого взрыва, то возможно, только сейчас порядок бы повторился».
Если это взрывает вам мозг, подумайте об этом так: есть только 52 карты, но в алфавите почте вдвое меньше букв. А теперь задумайтесь о количестве книг, написанных путем комбинации этих букв. Их невероятно много.
Вот еще что интересного я вам напомню: знаете ли вы например, что такое Число Шеннона ? А вот оказывается же, что Настоящего не существует и вот такой интересный эффект домино. Ну еще вы должны знать про Парадокс Монти Холла и про муравья на резиновом тросе
Взято: masterok.livejournal.com