Как японцы убьют двигатель внутреннего сгорания
Все же у электроавтомобилей есть много скептиков. И тут дело даже не в образе Илона Маска. Тут дело в принципе.
«Если мы используем “чистый” электромобиль, то и электроэнергия, которая приводит его в движение, должна вырабатываться с помощью “чистой” энергии: солнце, вода или ветер. Однако время и продолжительность, когда мы будем производить такую электроэнергию, не будет совпадать с тем временем, когда мы нуждаемся в ней. Это может быть суточная разница, погодная, сезонная и т.д. Значит, нам надо хранить электроэнергию в батареях долгое время — понадобятся гигантские хранилища.
Это нереально, тем более, что нынешние батареи не могут долго хранить энергию. Именно поэтому мы не мыслим будущего без водорода и автомобилей на топливных элементах», — это слова Геральда Килманна, вице-президента по исследованиям и разработкам Toyota.
Схема расположения основных объектов на ветряной электростанции и водородной фабрике Hama Wing
Мы уже не раз писали о том, что японский автопроизводитель видит свое будущее в развитии технологий на топливных элементах, где основным топливом должен стать водород. Но где и как его добывают таким способом, чтобы весь процесс стал экологически чистым? Для ответа на этот вопрос мы отправились в Японию на небольшую опытно-экспериментальную фабрику Hama Wing в Иокогаме, что в 40 минутах езды от Токио. Ее начали строить в 2015 году, а уже в 2018 фабрика должна выйти на проектную мощность. Речь идет о ветряной электростанции, расположенной на самом берегу бухты Иокогама, которая совмещена с производством водорода путем электролиза воды и его хранилищем.
Весь процесс производства, сжатия, хранения, транспортировки и использования водорода в одной схеме.
Электричество необходимо для электролизной установки, которая расщепляет воду на кислород и водород, а также компрессоров, которые сжимают водород для последующего стационарного хранения в резервуаре, расположенном на самой станции, либо для транспортировки в грузовиках-заправщиках до конечного потребителя. В данном случае потребителями являются местные предприятия, использующие 2,5-тонные вилочные погрузчики на топливных элементах. Излишки электричества, вырабатываемые ветрогенератором, либо запасаются в хранилище с аккумуляторами, либо отдаются в электросеть города посредством распределительной щитовой. Это если вкратце, но самое интересное кроется в деталях.
Сейчас погрузчики на топливных элементах используются в четырех компаниях: на складах хранения замороженной продукции в распределительных центрах двух логистических компаний в городе Кавасаки, транспортировке тяжестей на пивоварне известной японской марки Kirin и в секции фруктов и овощей на центральном оптовом рынке в городе Иокогаме — то есть там, где нежелательно использовать технику с ДВС.
Система стабилизации производства водорода и накопления энергии представляет собой два контейнера, в которых находятся 180 штук б/у никель-металл-гидридных батарей от Toyota Prius. Производительность данной системы — 150 кВт ч. Каждая батарея проходит регулярную техническую инспекцию на пригодность. Таким образом обеспечивается не только гибкость при производстве водорода, но и утилизация старых батарей от гибридов.
Сам процесс выработки водорода происходит в электролизной установке, изготовленной компанией Toshiba. Это небольшой контейнер (длина — 6,2 м, ширина — 2,4 м, высота — 2,9 м), в котором находятся воздушный компрессор, электролизер, охладитель и воздушный ресивер. Рядом с электролизной установкой расположен небольшой резервуар с азотом. Азот нужен для работы охладителя, так как в процессе электролиза выделяется тепло — водород находится в нагретом состоянии. Таким образом система охлаждает всю установку и полученный газ, чтобы исключить возможность его взрыва.
Хранилище водорода представляет собой компрессорную станцию и резервуар в виде вертикальной колонны объемом 100 м³, где водород хранится под давлением 0,4-0,82 МПа. Резервуар может запасать до 800 н.м³ водорода, однако активный объем газа, который обычно отбирается и закачивается, — 400 н.м³. Этого объема достаточно для 2 дней работы 12 вилочных погрузчиков на топливных элементах, что обеспечивает стабильность поставок даже в случае возможных перебоев с выработкой водорода на станции.
Для транспортировки водорода к конечному потребителю используются дизель-электрические гибридные грузовики Hino Dutro Hybrid последовательно-параллельной схемы, выполненной на манер Toyota Prius. Одного грузовика хватает, чтобы заправить 6 погрузчиков на топливных элементах. Грузовики по сути являются мобильными водородоснабжающими АЗС: они оснащены оборудованием, позволяющим осуществлять закачку водорода под давлением 35 МПа непосредственно в погрузчик на местах, где отсутствует необходимая заправочная инфраструктура.
На борту грузовика установлены «цистерны» из композитных материалов общим объемом 300 л, которые вмещают 270 н.м³ водорода. Для этого используется многоступенчатая компрессорная станция производительностью 50 н.м³ в час, расположенная рядом с основным хранилищем. Водород, подводимый к компрессору под давлением 0,4 МПа, пройдя процесс четырехступенчатого сжатия, закачивается уже под давлением 45 МПа непосредственно в грузовик.
В самом погрузчике используется та же система на топливных элементах, что и в Toyota Mirai, немного адаптированная под конкретные условия использования. С одной стороны, в топливную ячейку поступает водород под давлением 35 МПа, а с другой, воздух, нагнетаемый специальным компрессором. В процессе электрохимической реакции электроэнергия поступает в аккумулятор, а вырабатываемая теплоэнергия используется в системе охлаждения. Аккумулятор, в свою очередь, подает ток на электромоторы, предназначенные для передвижения и перемещения грузоподъемного устройства.
«Выхлопом» в процессе выработки электроэнергии в топливном элементе погрузчика является обыкновенная вода, а не углекислый газ, бензопирены и окислы азота — вредные вещества, входящие в выхлопы двигателей внутреннего сгорания.
На заправку «полного бака» одного погрузчика, который вмещает 1,2 кг водорода, уходит 3 минуты. Этого запаса хватает на 8 часов непрерывной работы при температуре окружающей среды 0-40°С. Также на борту стоит преобразователь и бытовая розетка с напряжением 100В — таким образом погрузчик в любой момент может стать на 15 часов источником бесперебойного питания, к которому можно подключать приборы и устройства мощностью до 1 кВт.
Чтобы удовлетворить потребности клиента в водородном топливе и осуществлять поставку «точно в срок», была внедрена система оперативного управления, которая через облачное хранилище объединяет в единую сеть водородную станцию, грузовики и погрузчики на местах. Она отслеживает местоположение заправочного грузовика и давление в резервуарах, статус производства водорода на самой станции и количество топлива, оставшегося в каждом погрузчике. Таким образом, с помощью этой технологии планируется перейти на круглосуточный режим производства и доставки водорода.
У проекта Hama Wing есть несколько важных целей: первая — продемонстрировать всю технологическую цепочку производства и реализации низкоуглеродистого водорода от его получения и хранения до снабжения конечного потребителя; вторая — создать простую и понятную интегрированную систему, которая даст возможность оценить как практическую доступность водорода в качестве вида топлива, так и потенциал дальнейшего коммерческого использования этой системы; третья — использовать производство водорода как эффективную меру для развития региона и борьбы с глобальным потеплением.
Расчеты японских специалистов показывают, что уже сейчас вся технологическая цепочка «производство водорода-доставка-конечное использование» позволяет более чем на 80% сократить выбросы углекислого газа в сравнении с привычными схемами, где используются погрузчики с ДВС или электромоторами. Пока самым большим «загрязняющим» фактором является процесс доставки. В будущем гибридные грузовики планируется заменить автомобилями на топливных элементах — в этом случае выбросы вредных веществ будут сведены к нулю.
О «социальной» значимости данного проекта говорит тот факт, что в центре почти 4-миллионной Иокогамы в парке Ринко, где любят отдыхать местные жители, установлено электронное табло, которое круглосуточно показывает информацию о текущем состоянии ветряка и количестве выработанной электроэнергии. Более того, каждый год порядка 14000 человек посещает «водородную фабрику», чтобы воочию увидеть, как происходит выработка топлива будущего.
Как вы могли понять, фабрика Hama Wing, равно как и вышеупомянутый автомобиль Toyota Mirai, — это лишь начало, часть глобальной идеи японцев по переводу всего и вся на электричество и водород как энергоноситель, получаемые из возобновляемых источников энергии. Например, Toyota уже реализует программу строительства «зданий с нулевыми выбросами», использующих технологию на топливных элементах.
Проект Hama Wing — это, действительно, сотрудничество между промышленностью, правительством и научными кругами на государственном уровне. Префектура Канагава, Japan Environment Systems и Toyota Motor Corporation работают совместно с муниципалитетами, местными предприятиями и продвигают весь проект при поддержке Министерства окружающей среды, получая рекомендации от ученых Иокогамского и Цукубского университетов.
В понимании японцев водород должен стать важной частью «разумной энергетики» будущего при постройке интеллектуальных энергетических сетей. И здесь действует тот же принцип, который «тойотовские» инженеры исповедуют в случае с электромобилями: они пригодны, если речь идет о компактных транспортных средствах, которые хранят небольшой запас энергии и перемещаются на небольшие расстояния. А вот для больших машин и серьезных расстояний лучше использовать водород.
Потенциал водорода как источника энергии достаточно велик. Во-первых, его можно вырабатывать из различных источников первичной энергии. Во-вторых, его можно сохранить и транспортировать в больших количествах. В-третьих, он может компенсировать колебания в производстве возобновляемой энергии. В-четвертых, затраты на хранение водорода в больших объемах невелики.
источники
https://auto.mail.ru/article/67449-kak_yaponcy_ubyut_dvigatel_vnutrennego_sgoraniya/
Взято: masterok.livejournal.com