Отчет BP за 2016 год - текущая ситуация в мировой энергетике (часть 2)
22.09.2017 524 0 0 tnenergy

Отчет BP за 2016 год - текущая ситуация в мировой энергетике (часть 2)

---
0
В закладки
Оригинал взят у za_neptunie в Отчет BP за 2016 год - текущая ситуация в мировой энергетике (часть 2)



Различные типы источников энергии для мировой энергетики в 2016 году (в процентах) по данным BP.

   Во второй части обзора перейдем к менее распространенным источникам энергии по сравнению с нефтью, природным газом и углем.

Атомная энергетика (АЭС)



Доля АЭС в мировой энергетике выросла до 17% в 2002 году, но к 2016 году несколько снизилась до 13.5%:



Общее число работающих ядерных реакторов:



Мировая атомная энергетика восстанавливается после кризиса вызванного аварией на японской АЭС Фукусима. В 2016 году на АЭС было выработано электроэнергии объемом около 592 млн. тонн н.э. против 635 млн. тонн н.э. в 2006 году. Мировое производство энергии на АЭС (млн. тонн н.э.):



Крупнейшими производителями электричества на АЭС (больше 40 млн. тонн н.э.) являются США, Франция, Китай и Россия. До недавнего времени в этот список входили Германия и Япония.



Как видно из графика наиболее активно сегодня атомная энергетика развивается в Китае и России. В настоящее время именно в этих странах строится наибольшее число АЭС:



Число работающих ядерных реакторов по странам:



Возраст работающих ядерных реакторов:



Число включаемых и выключаемых ядерных реакторов:



Большинство АЭС работают около 80% своего времени:



Считается, что уран (топливо для АЭС) также является исчерпаемым ресурсом. График добычи и потребления урана на 2015 год:



Основные производители урана в 2007-2016 годах:



Мировые запасы урана:



В настоящее время в России развивается направление атомных станций на быстрых нейтронах (замкнутого цикла), которые позволят решить проблему отработанного топлива и многократно уменьшить потребление урана. Кроме того обсуждается возможность добычи урана из океанской воды. По оценкам запасы урана в океанской воде составляют около 4.5 миллиардов тонн, что эквивалентно 70 тысячам лет современного потребления.

   Одновременно продолжают развиваться технологии термоядерного синтеза. В настоящее время с 2013 года во Франции сооружается экспериментальная термоядерная установка ITER. Общие затраты на международный проект оцениваются в 14 миллиардов долларов. Ожидается, что завершение строительства этой установки произойдет в 2021 году. На 2025 год запланировано начало первых испытаний, на 2035 года полномасштабная эксплуатация установки. После создания ITER планируется создать к середине 21 века ещё более мощный термоядерный реактор DEMO:







Подробнее о развитие направления ядерных и термоядерных реакторов можно прочитать в блоге tnenergy.

Гидроэлектростанции (ГЭС)



 Гидроэнергетика в настоящее время является самым крупным источником возобновляемой энергии. Мировая выработка гидроэнергии выросла с середины 20 века в несколько раз (в 2016 году рост на 2.8% до 910 тонн н.э. по сравнению со среднегодовым ростом в 2.9% в 2005-2015 годы):



В то же время доля гидроэнергии в мировой энергетике за указанный период выросла всего с 5.5% до 7%:



Крупнейшими производителями гидроэнергии являются Китай, Канада, Бразилия, США, Россия и Норвегия.
Из этих стран, 2016 год стал рекордным по выработке гидроэлектроэнергии для Китая, России и Норвегии. В остальных странах максимумы пришлись на прошлые годы: Канада (2013 год), США (1997 год), Бразилия (2011 год).



Мировой гидропотенциал оценивается почти в 8 тысяч терраваттчасов (в 2016 году выработка гидроэнергии составила около 4 тысяч терраваттчасов).



СА – Северная Америка, ЕВ – Европа, ЯК – Япония и Республика Корея, АЗ – Австралия и Океания, СР – бывший СССР, ЛА – Латинская Америка, БВ – Ближний Восток, АФ – Африка, КТ – Китай, ЮА – Южная и Юго-Восточная Азия.

Дешевыми (категория 1) считаются гидроресурсы, обеспечивающие производство электроэнергии со стоимостью не выше чем тепловые электростанции на угле. Для более дорогих ресурсов стоимость электроэнергии возрастает в 1,5 раза и более (до 6–7 цент/кВт⋅ч). Почти 94% из еще не используемых дешевых гидроресурсов сосредоточено в пяти регионах: бывшем СССР, Латинской Америке, Африке, Южной и Юго-Восточной Азии и Китае (табл. 4.10). Вполне вероятно, что при их освоении возникнет ряд дополнительных проблем, в первую очередь экологических и социальных, связанных, в частности, с затоплением больших территорий.

Особенностью гидроэнергетики России, Латинской Америки, Африки и Китая является большая удаленность районов богатых гидроресурсами от центров потребления электроэнергии. В Южной и Юго-Восточной Азии значительный гидропотенциал сосредоточен в горных районах материка и на островах Тихого океана, где часто нет адекватных потребителей электроэнергии.

Более половины из оставшихся для освоения дешевых гидроресурсов находится в тропической зоне. Как показывает опыт существующих здесь ГЭС, устройство в таких районах крупных водохранилищ неизбежно порождает комплекс тяжелых экологических и социальных (в том числе медицинских) проблем. Гниение водорослей и «цветение» стоячей воды настолько ухудшают ее качество, что она становится непригодной для питья не только в водохранилище, но и ниже по течению реки.

   В условиях тропического климата водохранилища оказываются источником многих заболеваний (малярия и т.п.).
Учет отмеченных обстоятельств и ограничений может перевести часть дешевых ресурсов в категорию дорогих и даже вывести за пределы экономического класса.

     20 стран с наибольшим резервом по гидропотенциалу:




Карта расположения крупнейших ГЭС в 2008 и 2016 годах:




Карта расположения крупнейших строящихся и планируемых ГЭС на 2015 год:



Таблицы крупнейших нынешних и строящихся ГЭС:





Строительство ГЭС сталкивается с большим сопротивлением экологов, которые сомневаются в целесообразности подобного типа электростанций в связи с затоплением больших площадей во время создания водохранилищ. Так в первой десятке крупнейших искусственных водохранилищ (по общей площади) нет ни одного, которое было создано после 70х годов 20 века:





Похожая ситуация среди крупнейших водохранилищ по объему:



Создание крупнейшего по площади водохранилища в Гане (озеро Вольта) привело к переселению около 78 тысяч человек из зоны затопления. Проекты поворота рек на юг существовали не только в СССР, но и в США. Так в 50х годах был разработан план NAWAPA (North America Water and Power Alliance), который предусматривал создание судоходных путей от Аляски до Гудзонова залива, и переброски воды в юго-западные засушливые штаты США.



Одним из элементов плана должна была стать 6 ГВт-ая ГЭС на реке Юкон с площадью водохранилища в 25 тысяч км2.



Биотопливо



Производство биотоплива также характерно быстрым ростом. В 2016 году производство биотоплива составило 82 млн. тонн н.э. (рост на 2.5% по сравнению с 2015 годом). Для сравнения в период с 2005-2015 годы производство биотоплива росло в среднем на 14%.



С 1990 по 2016 годы доля биотоплива в мировой энергетике выросла с 0.1% до 0.62%:



Крупнейшими производителями биотоплива являются США и Бразилия (около 66% мирового производства):



В настоящее время для производства биотоплива используется около 30 миллионов гектаров земли. Это примерно 1% от всех сельскохозяйственных угодий планеты (около 5 миллиардов гектаров, из них пашня около 1 миллиарда гектаров). Структура селькохозяейственных угодий планеты:



К началу 19 века мировая площадь искусственно орошаемых земель составляла 8 млн. га, к началу 20 века — 40 млн. и к настоящему времени — 207 млн. га.

    В то же время в США на производство биотоплива уходит больше третьей части урожая зерновых:



Мировое производство зерновых в 1950-2016 годах:



Рост производства зерновых в мире в основном был связан с ростом урожайности при слабых изменениях посевных площадей:



Ветровая энергетика (ВЭС)



Мировое производство этого вида энергии также быстро растет со временем. В 2016 году рост составил 15.6% (с 187,4 до 217,1 млн. тонн н.э.). Для сравнения среднегодовой рост в 2005-2015 годы составлял 23%.



Доля в мировой энергетике выросла до 1.6% в 2016 году:


                         
    Крупнейшими производителями энергии из ветра являются Китай, США, Германия, Индия и Испания:



Быстрый рост производства энергии из ветра продолжается во всех этих странах, кроме Германии и Испании. В них максимум производства энергии из ветра достигнут в 2015 и 2013 годах соответственно. Другие страны с крупным производством энергии из ветра:



Средний фактор загрузки в мире равен 24-27%. Для разных стран этот параметр сильно различается: от 39.5% для Новой Зеландии (34-38% в Мексике, 33-36% в США, 36-43% в Турции, 36-44% в Бразилии, 39% в Иране, 37% в Египте) до 18-22% в Китае, Индии и Германии. По оценкам потенциал ветровой энергетики в 200 раз превышает текущие потребности человечества (второе место после солнечной энергетики):



Весь вопрос лишь в том, что эта энергия является очень непостоянной.

Солнечная энергетика (СЭС)



Производство энергии Солнца быстро растет: только с 2015 по 2016 год оно выросло с 58 до 75 млн. тонн н.э. (на 29.6%). Для сравнения среднегодовой рост за 2005-2015 годы составил 50.7%.



К 2016 году доля солнечной энергетики в мировой энергетике выросла до 0.56%:



Крупнейшими производителя солнечной энергии являются Китай, США, Япония, Германия и Италия:



Из них производство энергии замедлилось в Германии и Италии: c 8.8 и 5.2 до 8.2 и 5.2 млн. н.э. в 2015 и 2016 годах соответственно. Также быстрый рост производства солнечной энергии наблюдается и в других странах:



Средний фактор загрузки для мира равен около 10-13%. В то же время он сильно колеблется от 29-30% для Испании и 25-30% для ЮАР до 11% в Германии. Считается, что солнечная энергетика обладает наибольшим ресурсным потенциалом:





Весь вопрос заключается в непостоянстве этой энергии.

Производство энергии из биомассы (биогаза), геотермальной энергии и других экзотических направлений энергетики (к примеру, приливной энергетики)

Отчет BP показывает значительный рост подобных направлений за последние десятилетия:



В 2016 году рост по сравнению с прошлым годом составил 4.4% (с 121 до 127 млн. тонн нефтяного эквивалента). Для сравнения среднегодовой рост за период в 2005-15 годы был равен 7.7%. Доля в мировой энергетике этого направления выросла с 0.03% в 1965 году до 0.96% в 2016 году:



Крупнейшими производителями подобной энергии являются США, Китай, Бразилия и Германия:



Кроме того большое производство подобной энергии осуществляется в Японии, Италии и Великобритании:



Глобальное потепление:

Кроме перечисленных источников энергии важным фактором мировой энергетики является климатические изменения. В перспективе глобальное потепление может значительно снизить затраты цивилизации на отопление, которые являются одними из основных затрат энергии для северных стран. Потепление является наиболее сильным именно для северных стран, и именно в зимние месяцы (наиболее холодные месяцы).

    Карта среднегодовых температурных трендов:


Карта температурных трендов за холодный сезон (ноябрь - апрель):


Карта температурных трендов за зимние месяцы (декабрь - февраль):



Объем мировых выбросов СО2:



Максимум выбросов был достигнут в 2014 году: 33342 млн. тонн. С тех пор произошло некоторое снижение: в 2015 и 2016 года объём выбросов составил 33304 и 33432 млн. тонн соответственно.

Заключение

Из-за ограниченного размера поста мне не удалось подробно осветить наиболее быстро развивающееся направления мировой энергетики (СЭС и ВЭС), где наблюдается ежегодный рост на десятки процентов (вместе с огромными потенциальными ресурсами для освоения). Если есть желание читателей, то можно будет рассмотреть эти направления в следующих постах более детально. В целом, если взять динамику за последний год (2015-2016 годы), то мировая энергетика за этот период выросла на 171 млн. тонн н.э.. Из них:
1)      + 30 млн. тонн н.э. - ВЭС
2)      + 27 млн. тонн н.э. – ГЭС
3)      + 23 млн. тонн н.э. – нефть
4)      + 18 млн. тонн н.э. - природный газ
5)      + 17 млн. тонн н.э. – СЭС
6)      + 9 млн. тонн н.э. – АЭС
7)      + 6 млн. тонн н.э. - экзотические ВИЭ (биомасса, биогаз, геотермальные ЭС, приливные ЭС)
8)      + 2 млн. тонн н.э. - биотопливо
9)      – 230 млн. тонн н.э. – уголь

     Это соотношение показывает, что борьба за экологию в мире набирает обороты – использование ископаемого топлива сокращается (особенно угля) с одновременным наращиванием использования ВИЭ. В то же время остаётся проблема непостоянства и дороговизны ВИЭ (доступных технологий для аккумулирования этой энергии по прежнему нет), развитие которых в значительной мере стимулируется за счет государственных субсидий. В связи с этим интересно мнение читателей о том, какой источник энергии станет главным к середине 21 века (сейчас это нефть – 33% мировой энергетики в 2016 году).

View Poll: Какой источник энергии будет главным в мировой энергетике в 2050 году?уникальные шаблоны и модули для dle
Комментарии (0)
Добавить комментарий
Прокомментировать
[related-news]
{related-news}
[/related-news]