Какой шарик будет первым?
26.01.2017 519 0 0 masterok

Какой шарик будет первым?

---
0
В закладки


Три одинаковых шарика ОДНОВРЕМЕННО отпускают по трем желобам-траекториям. По какому пути шарик придет на финиш ПЕРВЫМ?

Ответ под катом:

Это называют Задачей о брахистохроне

Задача о брахистохроне была поставлена Иоганном Бернулли в Acta Eruditorum в июне 1696 года. Он представил проблему следующим образом:

“Я, Иоганн Бернулли, обращаюсь к самым блестящим математикам в мире. Ничто не является более привлекательным для умных людей, чем честная, сложная задача, решение которой, возможно, дарует славу и останется вечным памятником. Следуя примеру Паскаля, Ферма и т.д., я надеюсь получить благодарность всего научного сообщества, указывая лучшим математикам нашего времени проблему, на которой они смогут проверить свои методы и силу своего интеллекта. Если кто-то представит мне решение предлагаемой задачи, я публично объявлю его достойным похвалы’’.

Задача была следующей:

Даны две точки A и B, лежащие в вертикальной плоскости. Какова траектория точки, движущейся только под действием силы тяжести, которая начинает двигаться из A и достигает B за кратчайшее время?

Возможно, мы слишком углубляемся в ссылки Иоганна Бернулли на Паскаля и Ферма, но интересно отметить, что самая известная задача Паскаля была связана с циклоидой, о которой на данный момент Иоганн Бернулли знал, что она является решением задачи о брахистохроне, и что его метод решения этой задачи использовал идеи Ферма.

Иоганн Бернулли не был первым, кто рассматривал задачу о брахистохроне. Галилей в 1638 году изучал эту проблему в своей знаменитой работе “Беседы о двух новых науках’’. Его вариант задачи был сначала таким: найти прямую линию, соединяющую точку A с точкой на вертикальной прямой, которую можно достичь за наименьшее время. Он правильно рассчитал, что такая прямая из точки A будет составлять угол в 45^{circ} к вертикали при достижении необходимой вертикальной прямой в точке B.

Он вычислил время, необходимое для точки, чтобы перейти от A к B по прямой линии, затем он показал, что точка достигнет B быстрее, если она будет двигаться по двум отрезкам AC и CB, где C – точка на окружности.



Лучшая прямая Галилея



Хотя Галилей был совершенно прав в этом, но он сделал ошибку, когда он далее утверждал, что путь наискорейшего спуска от A до B будет дугой окружности – неверное заключение.



Результат Галилея



Вернемся к Иоганну Бернулли. Он изложил задачу в Acta Eruditorum и хотя и знал сам, как ее решать, бросил вызов другим. Лейбниц убедил Иоганна Бернулли дать больше времени для решения задачи, чем шесть месяцев, которые тот изначально предполагал отвести на это, чтобы зарубежные математики также имели возможность принять участие в ее решении. Было получено пять решений: Ньютона, Якоба Бернулли, Лейбница и Лопиталя плюс решение самого Иоганна Бернулли.

Теперь Иоганн Бернулли и Лейбниц намеренно искушали Ньютона этой задачей. Учитывая спор о дифференциальном исчислении, неудивительно, что Иоганн Бернулли включил в свой вызов такие слова:

“…еще меньше тех, кто способен решить наши замечательные задачи, да, меньше даже среди истинных математиков, гордящихся тем, что [они] … удивительно расширили границы (примеч. мое: видимо, науки) с помощью золотых теорем, которые (они думали), были никому не известны, но которые на самом деле уже давно были опубликованы другими’’.

По словам Кондуитта, биографа Ньютона, он решил задачу в вечер после возвращения домой из Королевского монетного двора. Ньютон

“… в разгар спешной большой перечеканки он не приходил домой из Тауэра до четырех часов (дня), очень устал, но не лег спать, пока не решил задачу, что произошло в четыре часа утра’’.

Ньютон послал свое решение Чарльзу Монтегю, графу Галифаксу, который был министром финансов и основателем Английского банка. Монтегю был главным покровителем и другом Ньютона в течение всей его жизни и, кроме того, гражданским мужем племянницы Ньютона. Он был президентом Королевского общества в с 1695 по 1698 г., так что было естественно, что Ньютон отправить ему решение задачи о брахистохроне. Однако, как писал он впоследствии, этот эпизод не понравился Ньютону:

“Я не люблю, когда иностранцы пристают и дразнят меня вещами, относящимися к математике…’’

Королевское общество опубликовано решение Ньютона анонимно в Трудах Королевского общества в январе 1697 г. Его решение было объяснено Монтегю следующим образом:

“Задача. Требуется найти кривую ADB, по которой вес, под действием своей тяжести наиболее быстро спустится из точки A в точку B.

Решение. Пусть из данной точки A проведена неограниченная прямая линия APCZ параллельно горизонтали. Пусть на ней будет описана произвольная циклоида AQP, пересекающая прямую AB (предполагается, что нарисованную и представленную при необходимости) в точке Q, и вторая циклоида ADC, основание и высота которой относятся к основанию и высоте первой как AB к AQ соответственно. Последняя циклоида будет проходить через точку B, и она будет той кривой, по которой вес силой своей тяжести спустится наиболее быстро из точки A в точку B’’.



Диаграмма Ньютона



Майский выпуск 1697 г. Acta Eruditorum содержал решение Лейбница задачи о брахистохроне на стр. 205, решение Иоганна Бернулли – на страницах 206-211, решение Якова Бернулли – на страницах 211-214, и латинский перевод решения Ньютона на стр. 223. Решение Лопиталя не было опубликовано до 1988 года, когда, почти 300 лет спустя, Жан Пейффер опубликовал его в Приложении 1 в P. Costabel and J. Peiffer (eds.), Bernoulli, Johann I Der Briefwechsel von Johann I Bernoulli. Band 2: Der Briefwechsel mit Pierre Varignon: Erster Teil: 1692-1702, Die Gesammelten Werke der Mathematiker und Physiker der Familie Bernoulli (Basel, 1988). Иоганн Бернулли представил тех, кто решал задачу, сказав:

“… мой старший брат является четвертым из тех, кого три великие страны – Германия, Англия и Франция, по одному из каждой, дали для объединения со мной в таких красивых поисках, в поисках одной истины’’.

В своем решение Иоганн Бернулли делит плоскость на полосы, и он предполагает, что частица движется по прямой в каждой полосе. Таким образом, путь ее кусочно-линейный. Задача состоит в определении угла, под которым направлен отрезок в каждой полосе, и для этого он обращается к принципу Ферма, а именно к тому, что свет всегда проходит расстояние за кратчайшее время. Если v – скорость в одной полосе, направленная под углом alpha к вертикали, и u скорость в следующей полосе, направленная под углом eta к вертикали, то по обычному закону синуса

displaystyle frac{v}{sinalpha} = frac{u}{sineta} .



Циклоида как предел полос



В пределе, когда полосы становятся бесконечно узкими, отрезки становятся кривой, у которой в каждой точке угол отрезка с вертикалью становится углом касательной к кривой, который она составляет с вертикалью. Если v – скорость в точке (x,y) и alpha – угол, который составляет касательная с вертикалью, то кривая удовлетворяет уравнению

displaystyle frac{v}{sinalpha} = const .

Галилей показал, что скорость v удовлетворяет условию

v = sqrt{2gy} ,

(где g – ускорение силы тяжести). Подстановка v дает уравнение кривой

displaystyle frac{sqrt{y}}{sinalpha} = const или y = k^2 sin^2alpha .

Воспользуемся тем, что y^{prime} =dy/dx={
m ctg},alpha и displaystylesin^2alpha =frac{1}{1 + {
m ctg}^2alpha} = frac{1}{1 + {y^{prime}}^{2}}, чтобы получить

y (1 + {y^{prime}}^2) = 2h

для константы displaystyle h=frac{1}{2}k^2.

Циклоида x(t)=h(t-sin t),y(t)=h(1-cos t) удовлетворяет этому уравнению. Чтобы убедиться в этом, отметим, что

displaystyle y^{prime}=frac{dy}{dx}=frac{dy}{dt}cdot frac{dt}{dx}=-frac{sin t}{1-cos t} ,

так что

egin{array}{l}<br ></img>displaystyle<br />y(1+y^{prime 2})=h(1-cos t)left( 1+frac{sin^2t}{(1-cos t)^2}
ight)=h left(1-cos t+frac{sin^2t}{1-cos t}
ight)=[5mm]<br />displaystyle<br />=hfrac{(1-cos t)^2+sin^2t}{1-cos t}=hfrac{2-2cos t}{1-cos t}=2h.<br />end{array}

Гюйгенс в 1659 году показал (к этому его привела задача Паскаля о циклоиде), что циклоида является решением задачи о таутохроне, а именно задачи о нахождении кривой, для которой время, затраченное частицей, скользящей вниз по ней под действием однородной силы тяжести, в самой нижней точке не зависит от выбора начальной точки.

Иоганн Бернулли закончил свое решение задачи о брахистохроне такими словами:

“Прежде чем я закончу, я должен еще раз выразить восхищение, которое я чувствую по поводу неожиданного тождества таутохроны Гюйгенса и моей брахистохроны. Я считаю особенно замечательным то, что это совпадение может иметь место только при выполнении гипотезы Галилея, так что мы даже получаем из этого доказательство его правоты. Природа всегда стремится действовать самым простым способом, и поэтому здесь позволяет одной кривой выполнять две различные функции, в то время как при любом другом предположении нам понадобились бы две кривые…’’

Несмотря на добрые слова, которыми Иоганн Бернулли описал решение задачи о брахистохроне своего брата Якоба Бернулли (см. выше), между братьями разгорелся серьезный спор после публикации Acta Eruditorum в мае 1697 г. Именно Якоб Бернулли теперь спорил со своим братом. Возвращаясь к первоначальному вопросу Галилея о времени достижения вертикальной линии, а не точки, он спрашивал:

“Для данных начальной точки и вертикальной прямой, из всех циклоид с одной и той же начальной точкой с одним и тем же горизонтальным основанием которая позволит точке, подвергающейся действию только однородной силы тяжести тяжести, достичь вертикальной прямой наиболее быстро?’’

Иоганн Бернулли решил эту задачу, показав, что циклоида, которая позволит точке наиболее быстро достичь данной вертикали, – та, которая пересекает эту вертикаль под прямым углом. Существует огромное количество информации, согласно Вариньону (см. P. Costabel and J. Peiffer (eds.), Bernoulli, Johann I Der Briefwechsel von Johann I Bernoulli. Band 2: Der Briefwechsel mit Pierre Varignon: Erster Teil: 1692-1702, Die Gesammelten Werke der Mathematiker und Physiker der Familie Bernoulli (Basel, 1988)), Якоб Бернулли поставил перед Иогранном Бернулли изопериметрические задачи, и между двумя братьями возник ожесточенный спор об этих задачах, в котором также участвовал и Вариньон. Это был неприятный инцидент, но он имел большое значение для математики, так как задачи, о которых спорили, непосредственно привели к основанию вариационного исчисления. Ссоры между братьями Бернулли подробно рассмотрены в R. Thiele, Das Zerwürfnis Johann Bernoullis mit seinem Bruder Jakob, Natur, Mathematik und Geschichte, Acta Hist. Leopold. No. 27 (1997), 257-276, где наряду с математическими деталями автор рассматривает и психологические аспекты. Он убедительно доказывает, что плохие отношения между ними должны были начаться дома из-за строгого и недоброго отца.

Методы, которые братья разработали для решения задач и которые они оспаривали друг у друга, были обобщены Эйлером в Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, опубликованных в 1744 году. В этой работе, русская версия названия которой “Метод нахождения плоских кривых, показывающий некоторые свойства максимумов и минимумов”, Эйлер обобщает задачи, исследованные братьями Бернулли, но сохраняет геометрический подход, разработанный Иоганном Бернулли для их решения. Он обнаружил то, что сейчас известно как уравнения Эйлера-Лагранжа для поиска стационарных точек и экстремумов функционалов.

Идея состоит в нахождении функции, на которой достигается максимум или минимум определенной величины, удовлетворяющей некоторым ограничениям. Например, Иоганн Бернулли перед Эйлером поставил определенные геодезические задачи, которые, как и задача о брахистохроне, были такого типа. Здесь задача состояла в нахождении кривых наименьшей длины, лежащих на данной поверхности. Эйлер, однако, отметил, что геометрический подход к таким задачам не был идеальным, и он давал только необходимые условия, которым должно удовлетворять решение. Вопрос о существовании решения не был решен Эйлером.

Лагранж в 1760 году опубликовал эссе о новом методе нахождения максимумов и минимумов неопределенных интегральных формул. Он дал аналитический метод, применимый к задачам вариационного исчисления. Во введении к своей работе Лагранж приводит историческое развитие идей, которые мы описали выше, но кажется целесообразным закончить эту статью, приведя слова Лагранжа, которые отражают в действительности все достижения:

“Первая задача этого типа [вариационного исчисления], которую решили математики – это задача о брахистохроне, или кривой наискорейшего спуска, предложенная Иоганном Бернулли в конце прошлого века. Ее решение было найдено рассмотрением частных случаев, и только спустя некоторое время, исследуя изопериметрические кривые, великий математик, о котором мы говорим, и его знаменитый брат Якоб Бернулли дали некоторые общие правила для решения ряда других задач того же типа. Поскольку, однако, правила не были достаточно общими, знаменитый Эйлер взял на себя задачу сведения всех этих исследований в общий метод, который он привел в своем “Рассуждении о новом методе определения максимумов и минимумов неопределенных интегральных формул’’ – оригинальной работе, в которой освещена глубокая наука исчисления. Тем не менее, несмотря на то что метод гениальный и мощный, надо признать, что он не так прост, как можно было бы надеяться в работе по чистому анализу…’’

Затем Лагранж переходит к описанию введенного им символа дифференциала delta. Он пишет:

“…метод, который требует только прямого использования принципов дифференциального и интегрального исчисления, но я должен настоятельно подчеркнуть, что поскольку мой метод требует, чтобы величину можно было изменять двумя различными способами, для различения этих двух вариантов я ввел новый символ delta в мои расчеты. Таким образом, delta z выражает разность z, отличную от dz, но которая, однако, будет удовлетворять тем же правилам, такую, что там, где имеем для любого уравнения dz=mdx, можно в равной степени записать delta z = mdelta x, и так же в других случаях’’.

J.J. O’Connor, E.F. Robertson, The brachistochrone problem. Перевод статьи http://www-history.mcs.st-and.ac.uk/HistTopics/Brachistochrone.html



View Poll: #2061957

Вот еще Простая логическая загадка, демонстрирующая нелогичность людей, а вот интересный парадокс ДНЕЙ РОЖДЕНИЙ и уже классический парадокс Монти-Холла. Еще такая задачка на сообразительность. Ах да, совсем забыл про задачку с шариками и водой и в какую сторону поедет велосипед?уникальные шаблоны и модули для dle
Комментарии (0)
Добавить комментарий
Прокомментировать
[related-news]
{related-news}
[/related-news]